

UNIT – V chapter 1

Transaction:

A transaction is a unit of program execution that accesses and possibly

updates various data items.

Usually, a transaction is initiated by a user program written in a high-level

data-manipulation language (typically SQL), or programming language with

embedded database accesses in JDBC or ODBC.

 A transaction is delimited by statements (or function calls) of the form begin

transaction and end transaction.

 The transaction consists of all operations executed between the begin

transaction and end transaction.

A transaction is action, or series of actions, carried out by user or application,

which accesses or updates contents of database.

It Transforms database from one consistent state to another, although

consistency may be violated during transaction.

The concept of transaction provides a mechanism for describing logical units of

database processing.

Transaction processing systems are systems with large databases and

hundreds of concurrent users that are executing database transactions.

Examples of such systems include systems for reservations, banking, stock

markets, super markets and other similar systems.

They require high availability and fast response time for hundreds of

concurrent users.

Single User Vs. Multi User Systems:

 A DBMS is a single user if at most one user at a time can use the system.

 A DBMS is a multi user if many users can use the system and hence

access the database concurrently.

 Multiple users can access databases and use the computer systems

simultaneously because of the concept of Multiprogramming.

 Multiprogramming allows the computer to execute multiple programs or

processes at the same time.

 If only a single central processing unit(CPU) exists, it can actually

executes at most one process at a time.

 However multiprogramming operating systems executes some actions

from one process then suspend that process and execute some actions of

the next process,and so on.

 A process is resumed at the point where it was suspended whenever it

gets its turn to use the CPU again.

 Hence concurrent execution of process is actually interleaved as

illustrated in the following figure, which shows two processes A and B

executing concurrently in an interleaved fashion.

Fig. 4.1 Interleaved processing Vs. Parallel Processing of concurrent

transactions.

Interleaving also prevents the long process from delaying other processes.

If the computer system has multiple hardware processors(CPUs), parallel

processing of multiple processing is possible as illustrated the process C and D

in the figure.

A transaction Can have one of two outcomes:

Success - transaction commits and database reaches a new consistent state.

Failure - transaction aborts, and database must be restored to consistent state

before it started.. Such a transaction is rolled back or undone.

Committed transaction cannot be aborted.

Aborted transaction that is rolled back can be restarted later.

Transactions, Read and Write Operations, and DBMS Buffers

A transaction is an executing program that forms a logical unit of database

processing.

A transaction includes one or more database access operations such as

insertion, deletion, modification, or retrieval operations.

The database operations that form a transaction can either be embedded

within an application program or they can be specified interactively via a high-

level query language such as SQL.

One way of specifying the transaction boundaries is by specifying explicit begin

transaction and end transaction statements in an application program; in this

case, all database access operations between the two are considered as forming

one transaction.

A single application program may contain more than one transaction if it

contains several transactions boundaries.

read-only transaction:

If the database operations in a transaction do not update the database but

Only retrieve data, the transaction is called a read-only transaction.

 A database is basically represented as a collection of named data items.

Granularity:

The size of a data item is called its granularity, and it can be a field of some

record in the database, or it may be a larger unit such as a record or even a

whole disk block,

Basic database access operations:

 read_item(X): Reads a database item named X into a program variable. To

simplify our notation, we assume that the program variable is also named X.

write_item(X): Writes the value of program variable X into the database item

named X.

Executing a read_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory

3. Copy item X from the buffer to the program variable named X.

Executing a write_item(X) command includes the following steps:

1. Find the address of the disk block that contains item X.

2. Copy that disk block into a buffer in main memory

3. Copy item X from the program variable named X into its correct location in

the buffer.

4. Store the updated block from the buffer back to disk

Step 4 is the one that actually updates the database on disk. In some cases the

buffer is not immediately stored to disk, in case additional changes are to be

made to the buffer.

Usually, the decision about when to store back a modified disk block that is in

a main memory buffer is handled by the recovery manager of the DBMS in

cooperation with the underlying operating system.

The DBMS will generally maintain a number of buffers in main memory that

hold database disk blocks containing the database items being processed

A transaction includes read_item and wri te_item operations to access and

update the database. Figure 4.2 shows examples of two very simple

transactions.

The read-set of a transaction is the set of all items that the transaction reads,

and the write-set is the set of all items that the transaction writes.

Fig 4.2: Two sample transactions. (a) Transaction T1 . (b) Transaction T2

Transaction States or State Transition Diagram and Additional Operations

A transaction is an atomic unit of work that is either completed entirety or not

done at all. For recovery purposes, the system needs to keep track of when the

transaction starts, terminates, and commits or aborts.

Hence, the recovery manager keeps track of the following operations:

BEGIN_TRANSACTION: This marks the beginning of transaction execution.

READ DR WRITE: These specify read or write operations on the database

items that are executed as part of a transaction.

END_TRANSACTION: This specifies that READ and WRITE transaction

operations have ended and marks the end of transaction execution. However,

at this point it may be necessary to check whether the changes introduced by

the transaction can be permanently applied to the database (committed) or

whether the transaction has to be aborted because it violates serializability or

for some other reason.

COMMIT_TRANSACTION: This signals a successful end of the transaction so

that any changes (updates) executed by the transaction can be safely

committed to the database and will not be undone.

ROLLBACK (OR ABORT): This signals that the transaction has ended

unsuccessfully, so that any changes or effects that the transaction may have

applied to the database must be undone.

Figure 17.4 shows a state transition diagram that describes how a transaction

moves through its execution states.

Active state: A transaction goes into an active state immediately after it

 , where it can issue READ and WRITE operations.

Partially committed state: When the transaction ends, it moves to the

partially committed state. At this point, some recovery protocols need to

ensure that a system failure will not result in an inability to record the changes

of the transaction permanently

Committed state:

Once check in partially committed state is successful, the transaction is said to

have reached its commit point and enters the committed state.

Once a transaction is committed, it has concluded its execution successfully

and all its changes must be recorded permanently in the database.

Failed state:

A transaction can go to the failed state if one of the checks fails or if the

transaction is aborted during its active state.

The transaction may then have to be rolled back to undo the effect of its WRITE

operations on the database.

Terminated state:

The terminated state corresponds to the transaction leaving the system.

The transaction information that is maintained in system tables while the

transaction has been running is removed when the transaction terminates.

ACID Properties or DESIRABLE PROPERTIES OF TRANSACTIONS

In DBMS ACID (Atomicity, Consistency, Isolation, Durability) is a set of

properties that guarantee that database transactions are processed reliably. In

the context of databases, a single logical operation on the data is called a

transaction. For example, a transfer of funds from one bank account to another,

even involving multiple changes such as debiting one account and crediting

another, is a single transaction.

Jim Gray defined these properties of a reliable transaction system in the late

1970s and developed technologies to achieve them automatically

Atomicity:

Atomicity refers to the ability of the DBMS to guarantee that either all of the

operations of a transaction are performed or none of them are. Database

modifications must follow an all or nothing rule. Each transaction is said to be

atomic if when one part of the transaction fails, the entire transaction fails.

The atomicity property requires that we execute a transaction to completion. It

is the responsibility of the transaction recovery subsystem of a DBMS to ensure

atomicity.

If a transaction fails to complete for some reason, such as a system crash in

the midst of transaction execution, the recovery technique must undo any

effects of the transaction on the database.

 Consistency:

The consistency property ensures that the database remains in a consistent

state before the start of the transaction and after the transaction is over

(whether successful or not).

The preservation of consistency is generally considered to be the responsibility

of the programmers who write the database programs or of the DBMS module

that enforces integrity constraints.

A consistent state of the database satisfies the constraints specified in the

schema as well as any other constraints that should hold on the database. A

http://en.wikipedia.org/wiki/Atomicity_(database_systems)
http://en.wikipedia.org/wiki/Consistency_(database_systems)
http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://en.wikipedia.org/wiki/Durability_(database_systems)
http://en.wikipedia.org/wiki/Database_transaction
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist)

database program should be written in a way that guarantees that, if the

database is in a consistent state before executing the transaction, it will be in a

consistent state after the complete execution of the transaction,

Isolation:

The isolation portion of the ACID Properties is needed when there are

concurrent transactions. Concurrent transactions are transactions that occur

at the same time, such as shared multiple users accessing shared objects.

 Although multiple transactions may execute concurrently, each transaction

must be independent of other concurrently executing transactions. A

transaction should appear as though it is being executed in isolation from

other transactions. That is, the execution of a transaction should not be

interfered with by any other transactions executing concurrently.

In a database system where more than one transaction are being executed

simultaneously and in parallel, the property of isolation states that all the

transactions will be carried out and executed as if it is the only transaction in

the system. No transaction will affect the existence of any other transaction.

Durability:

Maintaining updates of committed transactions is critical. These updates must

never be lost. The ACID property of durability addresses this need. Durability

refers to the ability of the system to recover committed transaction updates if

either the system or the storage media fails. Features to consider for durability:

 recovery to the most recent successful commit after a database software

failure

 recovery to the most recent successful commit after an application

software failure

 recovery to the most recent successful commit after a CPU failure

 recovery to the most recent successful backup after a disk failure

 recovery to the most recent successful commit after a data disk failure

The System Log

To be able to recover from failures that affect transactions, the system

maintains a log to keep track of all transaction operations that affect the values

of database items.

This information may be needed to permit recovery from failures.

The log is kept on disk, so it is not affected by any type of failure except for disk

or catastrophic failure.

In addition,the log is periodically backed up to archival storage (tape) to guard

against such catastrophic failures.

 We now list the types of entries-called log records-that are written to the log

and the action each performs.

 In these entries, T refers to a unique transaction-id that is generated

automatically by the system and is used to identify each transaction:

1.[start_transaction,T]: Indicates that transaction T has started execution.

2. [write_item,T,X,old_value,new_value]: Indicates that transaction T has

changed the value of database item X from old_value to new_value.

3. [read_item,T,X]: Indicates that transaction T has read the value of database

item X.

4. [commit,T]: Indicates that transaction T has completed successfully, and

affirms that its effect can be committed (recorded permanently) to the database.

5. [abort.T]: Indicates that transaction T has been aborted.

Commit Point of a Transaction

 A transaction T reaches its commit point when all its operations that

access the database have been executed successfully and the effect of all

the transaction operations on the database have been recorded in the log.

Beyond the commit point, the transaction is said to be committed, and

its effect is assumed to be permanently recorded in the database.

 The transaction then writes a commit record [commit,T] into the log.

 If a system failure occurs, we search back in the log for all transactions T

that have written a [start_transaction,T] record into the log but have not

written their [commit,T] record yet; these transactions may have to be

rolled back to undo their effect on the database during the recovery

process. Transactions that have written their commit record in the log

must also have recorded all their WRITE operations in the log, so their

effect on the database can be redonefrom the log records.

 The log file must be kept on disk. Updating a disk file involves copying

the appropriate block of the file from disk to a buffer in main memory,

updating the buffer in main memory, and copying the buffer to disk.

 It is common to keep one or more blocks of the log file in main memory

buffers until they are filled with log entries and then to write them back

to disk only once, rather than writing to disk every time a log entry is

added. This saves the overhead of multiple disk writes of the same log file

block.

 At the time of a system crash, only the log entries that have been written

back to disk are considered in the recovery process because the contents

of main memory may be lost. Hence, before a transaction reaches its

commit point, any portion of the log that has not been written to the disk

yet must now be written to the disk. This process is called force-writing

the log file before committing a transaction

Database Management System:

Concurrency control:

Processes of managing simultaneous operations on the database without

having them interfere with one another.

 Prevents interference when two or more users are accessing database

simultaneously and at least one is updating data.

 Although two transactions may be correct in themselves, interleaving of

operations may produce an incorrect result.

Why Concurrency Control Is Needed

Concurrency control and recovery mechanisms are mainly concerned with the

database access commands in a transaction. Transactions submitted by the

various users mayexecute concurrently and may access and update the same

database items. If this concurrent execution is uncontrolled, it may lead to

problems, such as an inconsistent database. Several problems can occur when

concurrent transactions execute in an uncontrolled manner.

These problems are

1. Lost update problem

2. The temporary update or Dirty Read Problem.

3. Incorrect summary problem.

The Lost Update Problem

This problem occurs when two transactions that access the same database

items have their operations interleaved in a way that makes the value of

some database items incorrect.

Suppose that transactions T1 and T2 are submitted at approximately the same

time, and suppose that their operations are interleaved as shown in the figure

a, then the final value of X is incorrect. Because T2 reads the value of X before

T1 changes it in the database and hence the updated value

resulting from T1 is lost.

For example, if X = 80 at the start, N =5 and M = 4 the final result should be

X =79; but in the interleaving of operations shown in Figure a, it is X = 84

because the update in T1 that removed the five from X was lost.

 Fig a: The lost update problem.

The Temporary Update (or Dirty Read) Problem

 This problem occurs when one transaction updates a database item and then

the transaction fails for some reason.

 The updated item is accessed by another transaction before it is changed back

to its original value. Figure b shows an example where T1 updates item X and

then fails before completion, so the system must change X back to its original

value. Before it can do so, however, transaction T2 reads the temporary value

of X, which will not be recorded permanently in the database because of the

failure of T r-The value of item X that is read by T2 is called dirty data, because

it has been created by a transaction that has not completed and committed yet;

hence, this problem is also known as the dirty read problem.

The Incorrect Summary Problem

 If one transaction is calculating an aggregate summary function on a number

of records while other transactions are updating some of these records, the

aggregate function may calculate some values before they are updated and

others after they are updated. For example, suppose that a transaction T3 is

calculating the total number of reservations on all the flights; meanwhile,

transaction T1is executing. If the interleaving of operations shown in Figure c

occurs, the result of T3 will be off by an amount N because T3 reads the value

of X after N seats have been Subtracted from it but reads the value of Y before

those N seats have been added to it.

Another problem that may occur is called unrepeatable read, where a

transaction T reads an item twice and the item is changed by another

transaction T' between the two reads. Hence, T receives different values for its

two reads of the same item.

Why Recovery Is Needed

Whenever a transaction is submitted to a DBMS for execution, the system is

responsible for making sure that either (1) all the operations in the transaction

are completed successfully and their effect is recorded permanently in the

database, or (2) the transaction has no effect whatsoever on the database or on

any other transactions.

The DBMS must not permit some operations of a transaction T to be applied to

the database while other operations of T are not.

This may happen if a transaction fails after executing some of its operations

but before executing all of them.

Types of Failures

Failures are generally classified as transaction, system, and media failures.

There are several possible reasons for a transaction to fail in the middle of

execution

1. A computer failure (system crash): A hardware, software, or network error

occurs in the computer system during transaction execution. Hardware

crashes are usually media failures-for example, main memory failure.

2. A transaction or system error: Some operation in the transaction may

cause it to fail, such as integer overflow or division by zero.

Transaction failure may also occur because of erroneous parameter values or

because of a logical programming error.' In addition, the user may interrupt the

transaction during its execution.

3. Local errors or exception conditions detected by the transaction:

During transaction execution, certain conditions may occur that necessitate

cancellation of the transaction. For example, data for the transaction may not

be found.

Notice that an exception condition," such as insufficient account balance in a

banking database, may cause a transaction, such as a fund withdrawal, to be

cancelled.

This exception should be programmed in the transaction itself, and hence

would not be considered a failure.

4. Concurrency control enforcement: The concurrency control method may

decide to abort the transaction, to be restarted later, because it violates

serializability or because several transactions are in a state of deadlock.

5. Disk failure: Some disk blocks may lose their data because of a read or

write malfunction or because of a disk read/write head crash. This may

happen during a read or a write operation of the transaction.

6. Physical problems and catastrophes: This refers to an endless list of

problems that includes power or air-conditioning failure, fire, theft, sabotage,

overwriting disks or tapes by mistake, and mounting of a wrong tape by the

operator.

Schedule

When transactions are executing concurrently in an interleaved fashion, then

the order Of execution of operations from the various transactions is known as

a schedule.

A sequences of instructions that specify the chronological order in which

instructions of concurrent transactions are executed

Schedules (Histories) of Transactions

A schedule (or history) S of n transactions T1 , T2, ... , Tn is an ordering of the

operations of the transactions subject to the constraint that, for each

transaction Ti that participates in S, the operations of Ti, in S must appear in

the same order in which they occur in Ti.

That means a schedule for a set of transactions must consist of all instructions

of those transactions.

For example, the schedule of below Figure which we shall call Sa can be written

as follows in this notation:

Sa: r1(X); r2(X); W1(X); r1(Y); w2(X); W1(Y);

Two operations in a schedule are said to conflict if they satisfy all three of the

following conditions:

 (l) they belong to different transactions;

(2) they access the same item X; and

(3) at least one of the operations is a write_item(X).

For example, in schedule Sa the operations r l(X) and w2(X) , the operations

r2(X)and W1(X), and the operations w1(X) and W2(X) are conflict. However, the

operations r l(X) and r2(X) do not conflict, since they are both read operations;

the operations W2(X) and W1 (Y) do not conflict, because they operate on

distinct data items X and Y; and the operations rl(X)and W1 (X) do not conflict,

because they belong to the same transaction.

A schedule S of n transactions T1, T2, ••• , Tn is said to be a complete

schedule if the following conditions hold:

1. The operations in S are exactly those operations in T1,T2, •.• , Tn including a

commit or abort operation as the last operation for each transaction in the

schedule.

2. For any pair of operations from the same transaction Ti, their order of

appearance in S is the same as their order of appearance in T;

3. For any two conflicting operations, one of the two must occur before the

other in the schedule.

Characterizing Schedules Based on Recoverability

For some schedules it is easy to recover from transaction failures, whereas for

other schedules the recovery process can be quite involved.

Hence, it is important to characterize the types of schedules for which recovery

is possible, as well as those for which recovery is relatively simple. These

characterizations do not actually provide the recovery algorithm but

instead only attempt to theoretically characterize the different types of

schedules.

Following are the schedules classified based on recoverability

1.Recoverable schedule

2.Cascadeless schedule

3.Strict schedules

1. Recoverable schedule

A schedule S is recoverable if no transaction in T1 in S commits until all

Transactions of T2 that have written an item that T1 reads have committed.

A recoverable schedule is one where, for each pair of Transaction Ti and Tj

such that Tj reads data item previously written by Ti then the commit

operation of Ti appears before the commit operation Tj.

A transaction T1 reads from transaction T2 in a schedule S if some item X is

first written by T2 and later read by T1.

Recoverable schedules require a complex recovery process

Sa: T1(X); T2(X); W1(X); T1(Y); W2(X); C2; w1(Y); c1;

Sa is recoverable, even though it suffers from the lost update problem.

However,

consider the two (schedules Sc and Sd that follow:

Sc: rl(X); W1(X); r2(X); r1(Y); w2(X); C2; al;

Sd: rl (X); W1 (X); r2(X); rl(Y); w2(X); W1(Y); C1; C2;

Se: rl(X); W1(X); T2(X); rl(Y); W2(X); W1(Y); a1; a2;

Sc is not recoverable, because T2 reads item X from T1 , and then T2 commits

before T1 commits. If TI aborts after the C2 operation in Sc then the value of X

that T2 read is no longer valid and T2 must be aborted after it had been

committed, leading to a schedule that is not recoverable. For the schedule to be

recoverable, the C2 operation in Sc must be postponed until after T I commits,

as shown in Sd; if T I aborts instead of committing, then

T2 should also abort as shown in Se' because the value of X it read is no longer

valid.

2. Cascadeless schedule

A schedule is said to be cascadeless, if every transaction in the schedule reads

only items that were written by committed transactions.

To satisfy this criterion, the r2(X) command in schedules Sd and Se must be

postponed until after T1 has committed or aborted.

3. Strict schedules

A schedule, called a strict schedule, in which transactions can neither read

nor write an item X until the last transaction that wrote X has committed (or

aborted). Strict schedules simplify the recovery process.

Schedules classified on Serializability:-

Serial schedule:

 A schedule S is serial if, for every transaction T participating in

the schedule, all the operations of T are executed consecutively

in the schedule.

 Otherwise, the schedule is called non serial schedule.

Serializable schedule:

 A schedule S is serializable if it is equivalent to some serial

schedule of the same n transactions.

Assumption: Every serial schedule is correct

Goal: Like to find non-serial schedules which are also correct, because in serial

schedules one transaction have to wait for another transaction to complete,

Hence serial schedules are unacceptable in practice.

Result equivalent:

 Two schedules are called result equivalent if they produce

the same final state of the database.

Problem: May produce same result by accident!

S1 S2

read_item(X); read_item(X);

X:=X+10; X:=X*1.1;

 write_item(X); write_item(X);

Conflict equivalent:

 Two schedules are said to be conflict equivalent if the

order of any two conflicting operations is the same in both schedules.

Conflict serializable:

 A schedule S is said to be conflict serializable if it is

conflict equivalent to some serial schedule S’.

Can reorder the non-conflicting operations to improve efficiency

Non-conflicting operations:

 Reads and writes from same transaction

 Reads from different transactions

 Reads and writes from different transactions on different data items

Conflicting operations:

 Reads and writes from different transactions on same data item

Test for Serializability:-

• Construct a directed graph, precedence graph, G = (V, E)

– V: set of all transactions participating in schedule

– E: set of edges Ti Tj for which one of the following holds:

• Ti executes a write_item(X) before Tj executes read_item(X)

• Ti executes a read_item(X) before Tj executes write_item(X)

• Ti executes a write_item(X) before Tj executes write_item(X)

• An edge Ti Tj means that in any serial schedule equivalent to S, Ti

must come before Tj

• If G has a cycle, than S is not conflict serializable

• If not, use topological sort to obtain serialiazable schedule (linear order

consistent with precedence order of graph)

FIGURE 17.7 Constructing the precedence graphs for schedules A and D from

Figure 17.5 to test for conflict serializability.

 Precedence graph for serial schedule A.

 Precedence graph for serial schedule B.

 Precedence graph for schedule C (not serializable).

 Precedence graph for schedule D (serializable, equivalent to schedule A).

View equivalence:

 A less restrictive definition of equivalence of schedules

View serializability:

 definition of serializability based on view equivalence. A

schedule is view serializable if it is view equivalent to a serial schedule.

Two schedules are said to be view equivalent if the following three conditions

hold:

1. The same set of transactions participates in S and S’, and S and S’

include the same operations of those transactions.

2. For any operation Ri(X) of Ti in S, if the value of X read by the operation

has been written by an operation Wj(X) of Tj (or if it is the original value

of X before the schedule started), the same condition must hold for the

value of X read by operation Ri(X) of Ti in S’.

3. If the operation Wk(Y) of Tk is the last operation to write item Y in S, then

Wk(Y) of Tk must also be the last operation to write item Y in S’.

The premise behind view equivalence:

• As long as each read operation of a transaction reads the result of the

same write operation in both schedules, the write operations of each

transaction musr produce the same results.

• “The view”: the read operations are said to see the the same view in

both schedules.

Relationship between view and conflict equivalence:

• The two are same under constrained write assumption which assumes

that if T writes X, it is constrained by the value of X it read; i.e., new X =

f(old X)

• Conflict serializability is stricter than view serializability. With

unconstrained write (or blind write), a schedule that is view serializable

is not necessarily conflict serialiable.

• Any conflict serializable schedule is also view serializable, but not vice

versa.

Consider the following schedule of three transactions

T1: r1(X), w1(X); T2: w2(X); and T3: w3(X):

Schedule Sa: r1(X); w2(X); w1(X); w3(X); c1; c2; c3;

In Sa, the operations w2(X) and w3(X) are blind writes, since T1 and T3 do not

read the value of X.

Sa is view serializable, since it is view equivalent to the serial schedule T1, T2,

T3. However, Sa is not conflict serializable, since it is not conflict equivalent

to any serial schedule.

Introduction to Concurrency

What is concurrency?

Concurrency in terms of databases means allowing multiple users to access

the data contained within a database at the same time. If concurrent access is

not managed by the Database Management System (DBMS) so that

simultaneous operations don't interfere with one another problems can occur

when various transactions interleave, resulting in an inconsistent database.

Concurrency is achieved by the DBMS, which interleaves actions (reads/writes

of DB objects) of various transactions. Each transaction must leave the

database in a consistent state if the DB is consistent when the transaction

begins. Concurrent execution of user programs is essential for good DBMS

performance. Because disk accesses are frequent, and relatively slow, it is

important to keep the CPU humming by working on several user programs

concurrently. Interleaving actions of different user programs can lead to

inconsistency: e.g., check is cleared while account balance is being computed.

DBMS ensures such problems don’t arise: users can pretend they are using a

single-user system.

Purpose of Concurrency Control

o To enforce Isolation (through mutual exclusion) among conflicting

transactions.

o To preserve database consistency through consistency preserving

execution of transactions.

o To resolve read-write and write-write conflicts.

o Example:----In concurrent execution environment if T1 conflicts

with T2 over a data item A, then the existing concurrency control

decides if T1 or T2 should get the A and if the other transaction is

rolled-back or waits.

 LOCK

Definition : Lock is a variable associated with data item which gives the

status whether the possible operations can be applied on it or not.

Two-Phase Locking Techniques:

Binary locks: Locked/unlocked

The simplest kind of lock is a binary on/off lock. This can be created by

storing a lock bit with each database item. If the lock bit is on (e.g. = 1) then

the item cannot be accessed by any transaction either for reading or writing, if

it is off (e.g. = 0) then the item is available. Enforces mutual exclusion

Binary locks are:

 Simple but are restrictive.

 Transactions must lock every data item that is read or written

 No data item can be accessed concurrently

Locking is an operation which secures

(a) permission to Read

(b) permission to Write a data item for a transaction.

Example: Lock (X). Data item X is locked in behalf of the requesting

transaction.

 Unlocking is an operation which removes these permissions from the

data item.

Example:Unlock (X): Data item X is made available to all other

transactions.

• Lock and Unlock are Atomic operations.

• Lock Manager:

 Managing locks on data items.

• Lock table:

Lock manager uses it to store the identify of transaction locking

a data item, the data item, lock mode . One simple way to

implement a lock table is through linked list.

 < locking_transaction ,data item, LOCK >

The following code performs the lock operation:

 B: if LOCK (X) = 0 (*item is unlocked*)

 then LOCK (X) 1 (*lock the item*)

 else begin

 wait (until lock (X) = 0) and

 the lock manager wakes up the transaction);

 goto B

 end;

The following code performs the unlock operation:

 LOCK (X) 0 (*unlock the item*)

 if any transactions are waiting then

 wake up one of the waiting the transactions;

Multiple-mode locks: Read/write

– a.k.a. Shared/Exclusive

• Three operations

– read_lock(X)

– write_lock(X)

– unlock(X)

• Each data item can be in one of three lock states

– Three locks modes:

• (a) shared (read) (b) exclusive (write) (c) unlock(release)

– Shared mode: shared lock (X)

 More than one transaction can apply share lock on X for

reading its value but no write lock can be applied on X by any

other transaction.

– Exclusive mode: Write lock (X)

 Only one write lock on X can exist at any time and no shared

lock can be applied by any other transaction on X.

 _ Unlock mode: Unlock(X)

 After reading or writing the corresponding transaction

releases by issuing this.

The rules for multiple-mode locking schemes are a transaction T:

 Issue a read_lock(X) or a write_lock(X) before read(X)

 Issue a write_lock(X) before write(X)

 Issue an unlock(X) after all read(X) and write(X) are finished

The transaction T

 Will not issue read_lock (X) or write_lock(X) if it already holds a lock on

X

 Will not issue unlock(X) unless it already holds a lock on X

Lock table:

Lock manager uses it to store the identify of transaction locking

a data item, the data item, lock mode and no of transactions

that are currently reading the data item . It looks like as below

 <data item,read_ LOCK,nooftransactions,transaction

id >

This protocol isn’t enough to guarantee serializability. If locks are released too

early, you can create problems. This usually happens when a lock is released

before another lock is acquired.

The following code performs the read operation:

B: if LOCK (X) = “unlocked” then

begin LOCK (X) “read-locked”;

 no_of_reads (X) 1;

end

else if LOCK (X) “read-locked” then

 no_of_reads (X) no_of_reads (X) +1

 else begin wait (until LOCK (X) = “unlocked” and

 the lock manager wakes up the transaction);

 go to B

 end;

The following code performs the write lock operation:

B: if LOCK (X) = “unlocked” then

 LOCK (X) “write-locked”;

 else begin wait (until LOCK (X) = “unlocked” and

 the lock manager wakes up the transaction);

 go to B

 end;

The following code performs the unlock operation:

 if LOCK (X) = “write-locked” then

begin LOCK (X) “unlocked”;

 wakes up one of the transactions, if any

end

else if LOCK (X) “read-locked” then

 begin

 no_of_reads (X) no_of_reads (X) -1

 if no_of_reads (X) = 0 then

 begin

 LOCK (X) = “unlocked”;

 wake up one of the transactions, if any

 end

 end;

Lock conversion:-----

Lock upgrade: existing read lock to write lock

if Ti has a read-lock (X) and Tj has no read-lock (X) (i j) then

convert read-lock (X) to write-lock (X)

else

force Ti to wait until Tj unlocks X

Lock downgrade: existing write lock to read lock

Ti has a write-lock (X) (*no transaction can have any lock on X*)

convert write-lock (X) to read-lock (X)

Two-Phase Locking Techniques: The algorithm

The timing of locks is also important in avoiding concurrency problems. A

simple requirement to ensure transactions are serializable is that all read and

write locks in a transaction are issued before the first unlock operation known

as a two-phase locking protocol.

Transaction divided into 2 phases:

 growing - new locks acquired but none released

 shrinking - existing locks released but no new ones acquired

During the shrinking phase no new locks can be acquired!

– Downgrading ok

– Upgrading is not

Rules of 2PL are as follows:

 If T wants to read an object it needs a read_lock

 If T wants to write an object, it needs a write_lock

 Once a lock is released, no new ones can be acquired.

The 2PL protocol guarantees serializability

 Any schedule of transactions that follow 2PL will be serializable

 We therefore do not need to test a schedule for serializability

But, it may limit the amount of concurrency since transactions may have to

hold onto locks longer than needed, creating the new problem of deadlocks.

Two-Phase Locking Techniques: The algorithm

Here is a example without 2PL:-

 T1 T2 Result

 read_lock (Y); read_lock (X); Initial values: X=20; Y=30

 read_item (Y); read_item (X); Result of serial execution

 unlock (Y); unlock (X); T1 followed by T2

 write_lock (X); Write_lock (Y); X=50, Y=80.

 read_item (X); read_item (Y); Result of serial execution

 X:=X+Y; Y:=X+Y; T2 followed by T1

 write_item (X); write_item (Y); X=70, Y=50

 unlock (X); unlock (Y);

 T1 T2 Result

 read_lock (Y); X=50; Y=50

 read_item (Y); Nonserializable because it.

 unlock (Y); violated two-phase policy.

 read_lock (X);

 read_item (X);

 unlock (X);

 write_lock (Y);

 read_item (Y);

 Y:=X+Y;

 write_item (Y);

 unlock (Y);

 write_lock (X);

 read_item (X);

 X:=X+Y;

 write_item (X);

 unlock (X);

Here is a example with 2PL:-

 T’1 T’2 Result

 read_lock (Y); read_lock (X); T1 and T2

follow two-phase

 read_item (Y); read_item (X); policy but they

are subject to

 write_lock (X); Write_lock (Y); deadlock, which must be

 unlock (Y); unlock (X); dealt with.

 read_item (X); read_item (Y);

 X:=X+Y; Y:=X+Y;

 write_item (X); write_item (Y);

 unlock (X); unlock (Y);

Two-phase policy generates four locking algorithms:-

1. BASIC

2. CONSERVATIVE

3. STRICT

4. RIGOUROUS

• Previous technique knows as basic 2PL

• Conservative 2PL (static) 2PL: Lock all items needed BEFORE

execution begins by predeclaring its read and write set

– If any of the items in read or write set is already locked (by other

transactions), transaction waits (does not acquire any locks)

– Deadlock free but not very realistic

• Strict 2PL: Transaction does not release its write locks until AFTER it

aborts/commits

– Not deadlock free but guarantees recoverable schedules (strict

schedule: transaction can neither read/write X until last

transaction that wrote X has committed/aborted)

– Most popular variation of 2PL

• Rigorous 2PL: No lock is released until after abort/commit

– Transaction is in its expanding phase until it ends

